Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 615: 157-162, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35643055

RESUMO

Melatonin secretion from the pineal glands regulates circadian rhythms in mammals. Melatonin production is decreased by an increase in cytosolic Ca2+ concentration following the activation of nicotinic acetylcholine receptors in parasympathetic systems. We previously reported that pineal Ca2+ oscillations were regulated by voltage-dependent Ca2+ channels and large-conductance Ca2+-activated K+ (BKCa) channels, which inhibited melatonin production. In the present study, the contribution of small- and intermediate-conductance Ca2+-activated K+ (SKCa and IKCa) channels to the regulation of spontaneous Ca2+ oscillations was examined in rat pinealocytes. The amplitude and frequency of spontaneous Ca2+ oscillations were increased by a SKCa channel blocker (100 nM apamin), but not by an IKCa channel blocker (1 µM TRAM-34). On the other hand, they were decreased by a SKCa channel opener (100 µM DCEBIO), but not by an IKCa channel opener (1 µM DCEBIO). Expression analyses using quantitative real-time PCR, immunocytochemical staining, and Western blotting revealed that the SKCa2 channel subtype was abundantly expressed in rat pinealocytes. Moreover, the enhanced amplitude of Ca2+ oscillations in the presence of apamin was further increased by a BKCa channel blocker (1 µM paxilline). These results suggest that the activity of SKCa2 channels regulates cytosolic Ca2+ signaling and melatonin production during parasympathetic activation in pineal glands.


Assuntos
Melatonina , Glândula Pineal , Canais de Potássio Cálcio-Ativados , Animais , Apamina/farmacologia , Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Melatonina/metabolismo , Glândula Pineal/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Pirazóis/farmacologia , Ratos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
2.
J Biol Chem ; 293(3): 995-1006, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29187602

RESUMO

Pinealocytes regulate circadian rhythm by synthesizing and secreting melatonin. These cells generate action potentials; however, the contribution of specific ion channels to melatonin secretion from pinealocytes remains unclear. In this study, the involvement and molecular identity of Ca2+-activated Cl- (ClCa) channels in the regulation of melatonin secretion were examined in rat pineal glands. Treatment with the ClCa channel blockers, niflumic acid or T16Ainh-A01, significantly reduced melatonin secretion in pineal glands. After pineal K+ currents were totally blocked under whole-cell patch clamp conditions, depolarization and subsequent repolarization induced a slowly activating outward current and a substantial inward tail current, respectively. Both of these current changes were dependent on intracellular Ca2+ concentration and inhibited by niflumic acid and T16Ainh-A01. Quantitative real-time PCR, Western blotting, and immunocytochemical analyses revealed that TMEM16A and TMEM16B were highly expressed in pineal glands. siRNA knockdown of TMEM16A and/or TMEM16B showed that both channels contribute to ClCa currents in pinealocytes. Conversely, co-expression of TMEM16A and TMEM16B channels or the expression of this tandem channel in HEK293 cells mimicked the electrophysiological characteristics of ClCa currents in pinealocytes. Moreover, bimolecular fluorescence complementation, FRET, and co-immunoprecipitation experiments suggested that TMEM16A and TMEM16B can form heteromeric channels, as well as homomeric channels. In conclusion, pineal ClCa channels are composed of TMEM16A and TMEM16B subunits, and these fluxes regulate melatonin secretion in pineal glands.


Assuntos
Anoctamina-1/metabolismo , Anoctaminas/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Melatonina/metabolismo , Glândula Pineal/citologia , Animais , Anoctamina-1/genética , Anoctaminas/genética , Western Blotting , Células Cultivadas , Eletrofisiologia , Imuno-Histoquímica , Imunoprecipitação , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
3.
Am J Physiol Cell Physiol ; 310(9): C740-7, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26791489

RESUMO

The pineal glands regulate circadian rhythm through the synthesis and secretion of melatonin. The stimulation of nicotinic acetylcholine receptor due to parasympathetic nerve activity causes an increase in intracellular Ca(2+) concentration and eventually downregulates melatonin production. Our previous report shows that rat pinealocytes have spontaneous and nicotine-induced Ca(2+) oscillations that are evoked by membrane depolarization followed by Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCCs). These Ca(2+) oscillations are supposed to contribute to the inhibitory mechanism of melatonin secretion. Here we examined the involvement of large-conductance Ca(2+)-activated K(+) (BKCa) channel conductance on the regulation of Ca(2+) oscillation and melatonin production in rat pinealocytes. Spontaneous Ca(2+) oscillations were markedly enhanced by BKCa channel blockers (1 µM paxilline or 100 nM iberiotoxin). Nicotine (100 µM)-induced Ca(2+) oscillations were also augmented by paxilline. In contrast, spontaneous Ca(2+) oscillations were abolished by BKCa channel opener [3 µM 12,14-dichlorodehydroabietic acid (diCl-DHAA)]. Under whole cell voltage-clamp configurations, depolarization-elicited outward currents were significantly activated by diCl-DHAA and blocked by paxilline. Expression analyses revealed that the α and ß3 subunits of BKCa channel were highly expressed in rat pinealocytes. Importantly, the activity of BKCa channels modulated melatonin secretion from whole pineal gland of the rat. Taken together, BKCa channel activation attenuates these Ca(2+) oscillations due to depolarization-synchronized Ca(2+) influx through VDCCs and results in a recovery of reduced melatonin secretion during parasympathetic nerve activity. BKCa channels may play a physiological role for melatonin production via a negative-feedback mechanism.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Melatonina/metabolismo , Nicotina/farmacologia , Glândula Pineal/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Masculino , Glândula Pineal/citologia , Glândula Pineal/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...